Interpreting Cross-Section Returns of Machine Learning Models: Firm Characteristics and Moderation Effect through LIME

Zequn Li, Xiaoxia Lou, Ying Wu, Steve Yang

zli61@stevens.edu

Saturday, 19 October 2024 FMA 2024 Annual Meeting Session 243 - Machine Learning Application in Asset Pricing

Table of Contents

Introduction: The Cross-Section of Expected Stock Returns

Methodology: Machine Learning and LIME(Local Interpretable Model-Agnostic Explanations)

LIME-adjusted Moderation Regression Bivariate Dependent Sort Portfolio Analysis

Empirical Study of U.S. Equities

Predictive Models and Data

Empirical Results of LIME-adjusted Moderation Regression Empirical Results of Bivariate Dependent Sort Portfolio Analysis

Section 1

Introduction: The Cross-Section of Expected Stock Returns

The Cross-Section of Expected Returns

Research Challenge

- Firm characteristics predict cross-section expected returns
- Interactions between firm characteristics are complex
- Ten of thousands of potential interactions in the "Factor Zoo"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Motivation

- Explore interactions between firm characteristics
- ▶ The predictive power varies across different contexts

The Cross-Section of Expected Returns: Methods

Portfolio Analysis

- Group stocks based on characteristics
- Test if long-short return is zero
- Cannot handle multiple characteristics

Regression Analysis

Estimates relationship between firm characteristics and expected returns

- Test if coefficients are zero
- Handles multiple characteristics
- Issues with interactions and collinearity

Section 2

Methodology: Machine Learning and LIME(Local Interpretable Model-Agnostic Explanations)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Machine Learning in Empirical Asset Pricing

Predicting Expected Return as a function of Firm Characteristics¹

$$\mathbb{E}_t[r_{i,t+1}] = g(c_{i,t}) \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

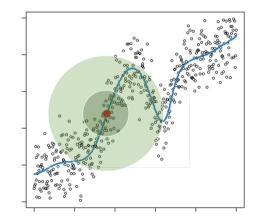
The function g(·) is consistent: Same form across firms and time periods
 Depends only on c_{i,t}: No information of the history and other stocks

Local Interpretable Model-agnostic Explanations(LIME)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 1. Select a Data Point
- 2. Perturb the Data Point
- 3. Predict perturbed samples
- 4. Fit local linear model
- 5. Interpret coefficients

Local Interpretable Model-agnostic Explanations(LIME)



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

LIME: Local Interpretable Model-agnostic Explanations

Formally, we define an explanation of a prediction from a machine learning model g for stock i at time t as an interpretable linear model $g_{i,t}(z)$.

$$\mathbb{E}[g(z)] = g_{i,t}(z) \quad z \in \pi_{c_{i,t}}$$
(2)

$$g_{i,t}(z) = a_{i,t} + \sum_{k=1}^{K} b_{i,t}^{(k)} z^{(k)}$$
(3)

- z: perturbed Samples
- ▶ $\pi_{c_{i,t}}$: neighborhood of $c_{i,t}$
- ► *a_{i,t}*: intercept
- ▶ $b_{i,t}^{(k)}$: local coefficient of the k-th feature
- ► K: number of features

LIME Coefficient: A Comprehensive Firm Characteristic

- LIME coefficient is new firm characteristic
- Available for each stock i at each time t
- Aggregates information of nonlinearity and interactions

Empirical Methodology: LIME-Adjusted Moderation Regression

Baseline Regression

$$r_{i,t+1} = \mathbf{a} + \delta_{k,t} c_{i,t}^{(k)} + \varepsilon_{i,t+1}$$
(4)

LIME-adjusted Moderation Regression

$$r_{i,t+1} = a + \delta_{k,t} c_{i,t}^{(k)} + \gamma_{k,t} b_{i,t}^{(k)} c_{i,t}^{(k)} + \xi_{k,t} b_{i,t}^{(k)} + \varepsilon_{i,t+1}$$
(5)

・ロット (四)・ (日)・ (日)・ (日)

Double-Sort Portfolio Analysis: Methodology Overview

Baseline Method: Univariate Sort Portfolio Analysis

- Sorting stocks into 5 equal-weighted portfolios based on firm characteristics {k}.
- Going long on top quintile, short on bottom quintile.
- Exaiming the performance and risk of the long-short portfolios.

Bivariate Dependent Sort

- First sort by LIME local coefficients $(b_{i,t}^{(k)})$ into quintiles.
- Within each LIME group, sort by firm characteristics $(c_{i,t}^{(k)})$ into quintiles.
- Results in 5×5 equal-weighted portfolios.
- Create long-short portfolios within each LIME group.
- Evaluate the performance and risk of the long-short portfolios.

Section 3

Empirical Study of U.S. Equities

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Predictive Models

Models

- ▶ Naive Model:Baseline; predicts zero excess return.
- Linear Model: Multivariate linear regression.
- Neural Network(NN3): Three hidden layers; captures nonlinearities.
- Random Forest(RF): Ensemble of decision trees

Interpretation Over Prediction

- Focus on interpretability, not prediction accuracy
- Experiments use NN3 and RF models
- Methodology adaptable to other machine learning models

Dataset and Training Methodologies

Sample Period and Data Split:

- Training: 1964–2021
- Validation: 12 years rolling window
- Testing: 1989 2021

Training Methodology:

- Annual retraining
- Expanding training window
- Rolling validation

Data Source:

- CRSP equity returns
- Risk-free rates: Kenneth French Library

Firm Characteristics:

- Firm characteristics provided by Gu et al. (2020)
- Ranked cross-sectionally and scaled to [-1, 1]
- Missing values replaced by cross-sectional medians
- The largest possible pool of assets

Direct Effects of Baseline Model

		agr	cfp_ia	chcsho	chempia	chinv	egr	grcapx	grltnoa
baseline	coef t-value	0.66 5.01	0.32 3.11	-0.39 - 3.79	-0.29 - 3.59	-0.34 - 4.44	-0.45 - 3.74	-0.34 - 4.34	-0.42 - 4.28
NN3	coef t-value	0.36 3.43	0.36 3.96	-0.41 - 3.42	-0.19 -2.45	-0.28 - 4.04	-0.28 -2.58	-0.36 - 4.50	-0.34 - 3.85
		hire	indmom	invest	lgr	mom1m	pctacc	sgr	sp
baseline	coef t-value	hire -0.40 - 4.56	indmom 0.41 3.27	invest -0.41 - 4.02	lgr -0.36 - 5.57	mom1m -0.53 - 4.52	pctacc -0.24 - 3.29	sgr -0.39 - 5.40	sp 0.52 3.19

Additional Direct Effect identified from NN3 model

		асс	dolvol	maxret	mom12m	mvel1
baseline	coef t-value	-0.33 -2.90	-0.38 -2.80	-0.01 -0.06	0.32 1.70	-0.39 -2.19
NN3	coef t-value			0.74 3.13	0.69 4.03	0.77 4.43

Moderation Effects of Firm Characteristics Identified by NN3 Model

	NN3 Di	rect Effect	NN3 Moderation Effect			
	coef	t-value	coef	t-value		
betasq	0.08	0.31	-1.54	-4.07		
chmom	0.24	2.28	0.53	4.30		
dolvol	1.00	4.73	2.46	4.22		
ер	0.33	1.25	-1.80	-3.40		
ill	-0.12	-0.78	-1.15	-3.25		
maxret	0.74	3.13	1.02	3.59		
mom12m	0.69	4.03	1.18	3.34		
mom1m	0.67	3.45	1.00	4.20		
тотбт	-0.29	-1.69	2.27	5.88		
mvel1	0.77	4.43	1.78	4.88		
retvol	0.95	3.62	2.02	4.18		
std_dolvol	0.03	0.30	-1.69	-3.57		
turn	0.58	2.88	0.83	4.31		
operprof	0.41	1.98	-1.84	-3.18		

Portfolio Group	Full Asset Pool	Filtered Sample	LIME 5	LIME 1
Mean Return (HML)	0.36	1.03	1.36	-1.03
t-stats (HML)	1.40	4.21	4.40	-3.13

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Key Insights

- Full sample without filtering shows weak momentum
- Filtered Sample performs better than the full asset pool
- LIME5 group shows the strongest momentum
- LIME1 group shows a reversal Pattern

Key Patterns in Portfolio Analysis - NN3 Model

Heatmap of Portfolio NN3

LIMET	-0.32	-1.01	0.24	0.38	-1.69	-1.03	-0.71	2.10	1.09	-0.77	-3.79	-2.78	-3.25
LIME2	0.37	0.04	0.19	0.14	-0.24	0.26	1.29	0.55	0.16	-0.05	-0.17	-0.23	-0.90
Group LIME3 -	0.51	0.64	0.19	0.16	0.29	0.28	1.23	0.31	0.05	-0.14	0.07	0.33	-0.38
Gro LIME4	0.89	0.88	0.09	-0.09	0.32	0.59	1.29	0.13	0.06	-0.09	0.15	0.11	-0.03
LIMES	1.41	2.82	-0.42	-1.19	0.39	1.36	1.29	0.4	-0.22	0.21	0.1	0.34	0.36
baseline	0.02	0.17	0.21	-0.24	-0.28	0.36	0.52	0.43	0.34	-0.47	-0.73	-0.70	-0.96
	maxret	retvol	betasq	ep	turn	mom6m	mom12m	ili	std_dolvol	chmom	mvel1	dolvol	mom1m

Contribution

Testing Moderation Effect

- Validates interaction statistically
- Quantifies moderation significance

Out-of-Sample Testing with Portfolio Analysis

- Tests predictions with portfolios
- Confirms practical applicability

LIME Coefficient as a Predictive Tool

- Serves as a new firm characteristic.
- Guides portfolio decisions

Conclusions

Innovative Methodological Framework

Integrated Machine Learning with LIME to analyze moderation effects

Enhanced Model Interpretability

Uncovered how firm characteristics interact to predict stock returns.

Empirical Findings

Identified significant firm characteristics predict stock returns through moderation

Practical Implications

Improved investment strategies via bivariate dependent sort portfolio analysis

Thank You! Comments and Questions are Welcome!

Section 4

Appendix

Out-of-Sample Performance: R^2

$$R_{oos}^{2} = 1 - \frac{\sum_{(i,t)\in\mathcal{T}_{3}}(r_{i,t+1} - \hat{r}_{i,t+1})^{2}}{\sum_{(i,t)\in\mathcal{T}_{3}}(r_{i,t+1})^{2}}$$
(6)

- T₃ is the set of testing samples, where the data never enter into model estimation or tuning.
- Different from the traditional R² measure, the denominator of the out-of-sample R² is the sum of squared excess returns without demeaning. We compare the model with the naive forecast of zero.

Table: Out-of-Sample Predictive Performance(percentage R^2)

	Naive	FM	FM5	NN3	RF
Full Sample	0.00	-1.02	-0.77	0.49	0.41
Common Stock, lag price > 2	0.00	-1.37	-1.04	0.27	0.26
Size top 1000	0.00	-1.72	-1.36	0.61	1.09
Size bottom 1000	0.00	-0.59	-0.89	-0.49	0.18

Out-of-Sample Prediction Sorted Portfolios I

We sort all firms into 10 portfolios based on their model-predicted returns and compute the holding period equal-weighted returns for each portfolio.

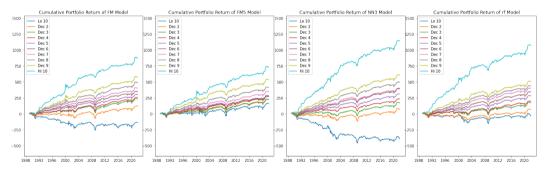


Figure: Machine Learning Portfolio(Full Sample)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Out-of-Sample Prediction Sorted Portfolios II

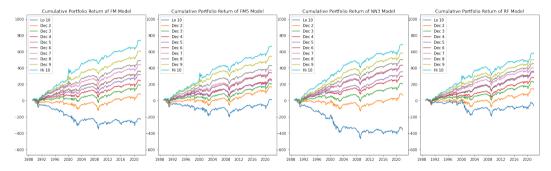


Figure: Machine Learning Portfolio(Common Stock, Lag Price > 2)

Key Patterns in Portfolio Analysis – RF Model

Number of Significant Firm Characteristics Across Models

